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Abstract. Magnetooptical properties of the materials with periodically modulated dielectric constant –
photonic crystals (or band-gap materials) have been examined with relation to their possible applications
for the control of electromagnetic radiation in the integrated optics devices. For this investigation we pro-
pose the original theoretical approach based on the perturbation theory. Magnetooptical Faraday and Voigt
effects have been studied near extremum points of photonic bands where their significant enhancement
takes place. On the grounds of the elaborated theory some experimental results are discussed. Experimen-
tally obtained Faraday rotation angle frequency dependence shows good agreement with our theoretical
predictions.

PACS. 78.20.Ls Magnetooptical effects – 78.20.Bh Theory, models, and numerical simulation – 73.21.Cd
Superlattices

1 Introduction

Recently, there has been much attention paid to a new
kind of dielectric composites – photonic crystals (PhC).
Photonic crystals (also called photonic bandgap materials)
are micro-structured materials in which the dielectric con-
stant is periodically modulated on a length scale compara-
ble to the desired wavelength of the electromagnetic radia-
tion [1–3]. Multiple interferences between electromagnetic
waves scattered from each unit cell results in a range of
frequencies that do not propagate in the structure – pho-
tonic band gaps (PBG’s). At these frequencies, the light is
strongly reflected from the surface of the crystal, while at
other frequencies light is transmitted. This phenomenon
is of great theoretical and practical significance [4]. It can
be used to study a wide range of physical problems re-
lated to the light localization [5] and light emission [6].
Photonic crystal materials with PBG’s permit the fabrica-
tion of micro-cavity lasers [7], single mode light emitting
diodes, highly efficient wave guides [8], high speed opti-
cal switches. However, PhC’s, even those without a PBG,
possess many other interesting properties related to the
dispersion, anisotropy, and polarization characteristics of
the photonic bands (PB). For example, these properties of
PhC’s offer the opportunity to create efficient dispersion
compensation [9], enhanced nonlinear frequency conver-
sion [10,11], novel superprism devices [12], optical polar-
izers, optical filters, and so on.
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The tunability of PhC’s optical properties can open
new applications of these materials in the integrated optics
devices. Tunability in semiconductor structures may be
achieved by varying temperature [13] or by varying volt-
age [14]. Other ways of achieving tunability are application
of elastic stress [15], liquid crystal infiltration [16], appli-
cation of external magnetic fields or using magnetic con-
stituents [17–26]. The latter two possibilities are of prime
interest because they not only permit significant tunabil-
ity but also can lead to some new interesting phenomena
of magnetooptics such as enhanced magnetic circular and
linear birefringence [23–26], mode conversion – phenom-
ena which are essential for the novel readout devices and
some devices of optical microcircuits.

In this paper, we will study magnetooptical effects of
two dimensional PhC’s composed either of dielectric or
magnetic materials that implies a study of the magnetic
field influence on the electromagnetic waves propagation
in PhC’s.

2 Basic equations and eigenvalues problem
for magnetooptical medium

Let us consider dielectric nonuniform medium that is char-
acterized by the dielectric constant εij(�r) = δijε(�r). Func-
tion ε(�r) is a periodic function ε(�r + �a) = ε(�r), where
�a = {a1�ex + a2�ey} – unit vector of the two dimensional
(2D) PhC. We examine a physical system that consists
of a periodic array of infinitely long, parallel, dielectric
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Fig. 1. Structure of two dimensional photonic crystal.

rods of dielectric constant ε1, embedded in a background
dielectric material of dielectric constant ε2. The intersec-
tions of the rods axes with XY plane form a 2D periodic
structure with square cell (Fig. 1).

The influence of magnetic field is taken into account
by means of a polarization vector

�Pm(�r) = iε0ε(�r)Q(�r) · �m× �E (1)

where ε0 = 8.85×10−12 F/m, �m – unit vector of magnetic
field (or magnetization), Q(�r) - magnetooptical parame-
ter, or Voigt parameter, of the medium (see e.g. [27]). For
ferromagnetic substances Q is of the order of 10−3÷10−4:
for yttrium iron garnets Q = 0.5 × 10−3(λ = 1.15 mkm),
and for bismuth-gadolinium iron garnets Q = 26 × 10−3

(λ = 0.54 mkm) [27]. For non-magnetic substances it is
proportional to the external magnetic field �Bext: for Si
Q = 1.2 × 10−6 (λ = 0.41 mkm, Bext = 0.1 T) [28],
for europium glass Q = 7 × 10−5 (λ = 0.435 mkm,
Bext = 0.1 T) [29].

Assuming µ = 1 it is straightforward to obtain
from Maxwell’s equations the following wave equation for
�E(�r, t):

∇×
{
∇× �E(�r, t)

}
= − ∂2

∂t2

{
ε(�r)
c2

�E(�r, t) + µ0
�Pm(�r, t)

}
,

(2)
where µ0 = 4π × 10−7 Vb/m2, c = (ε0µ0)

−1/2.
We seek the solution of (2) in the form �E(�r, t) =

�E(�r)e−iωt, where ω is the eigen-angular frequency, and
�E(�r) is eigenfunction of the wave equation (2). These
eigenfunctions should thus satisfy the next eigenvalue
equation:

LE
�E(�r) =

1
ε(�r)

∇×
{
∇× �E(�r)

}
−

(ω
c

)2
�E(�r) =

ω2

c2ε0ε(�r)
�Pm(�r).

(3)

Linear operator L̂E defined by (3) is not a Hermitian oper-
ator. To pass to the Hermitian operator we, following [29],
introduce a complex vectorial function �Ψ(�r) =

√
ε(�r) �E(�r),

that leads to the eigenvalue equation:(
Ĥ + V̂ − ω2

c2

)
�Ψ(�r) = 0, (4)

where

Ĥ �Ψ(�r) =
1√
ε(�r)

∇×
{
∇× 1√

ε(�r)
�Ψ(�r)

}
, (5)

V̂ �Ψ(�r) = −i
(ω
c

)2

Q · �m× �Ψ(�r). (6)

Operator Ĥ has been studied rigorously elsewhere [30,31].
Eigenfunctions of Ĥ are vectorial Bloch functions

�Ψn�k(�r) = �un�k(�r)ei�k�r, (7)

where �k is quasi-momentum and n is a number of the given
PB; un�k(�r||) = un�k(�r||+�a), �r|| = x�ex+y�ey. Corresponding
eigenvalues ωn form a band diagram with alternating per-
mitted bands and bandgaps. We will assume as usual that
vector �k belongs to the first Brillouin zone. These prop-
erties of eigenfunctions and eigenvalues are well-known in
the crystal physics and are direct consequences of opera-
tor’s Ĥ periodicity.

Operator V̂ describes interaction of electromagnetic
radiation with magnetic part of the medium’s polariza-
tion. It is proportional to the magnetooptical parameter
that is much smaller than 1. Consequently, operator V̂ can
be treated on the ground of perturbation theory.

Substitution of (7) into (4) gives(
Ĥ + V̂ − ω2

c2

)
�un�k = 0, (8)

where

Ĥ�un�k =
1√
ε
∇×∇× �un�k√

ε
+

i�k√
ε
×∇× �un�k√

ε

+
i√
ε
∇× �k × �un�k√

ε
−
�k

ε
× �k × �un�k, (9)

V̂ �un�k = −iω
2

c2
Q(�r||) · �m× �un�k. (10)

3 Eigenfunctions and their symmetry
for the nonmagnetic case

3.1 Two types of operator Ĥ modes

One of the main features of operator Ĥ is that its eigen-
functions can be divided into two types: quasi-longitudinal
modes �Ψ (L)

n�k
(�r) and quasi-transverse �Ψ

(T )

n�k
(�r) modes. The

former are given by [30]

�Ψ
(L)

n�k
(�r) = C

√
ε(�r)

�k + �Gn∣∣∣�k + �Gn

∣∣∣ exp
{
i
(
�k + �Gn

)
�r
}
, (11)
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Fig. 2. The first Brillouin zone for two dimensions.

where �Gn is a reciprocal lattice vector and C is a nor-
malization constant. It can be shown easily that �Ψ (L)

n�k
(�r)

satisfies

∇×
{

1√
ε(�r)

�Ψ
(L)

n�k
(�r)

}
= 0, (12)

that gives Ĥ �Ψ
(L)

n�k
(�r) = 0. This equation implies that

�Ψ
(L)

n�k
(�r) is an eigenfunction of Ĥ with eigen-angular fre-

quency ω
(L)

n�k
= 0. At the same time, �Ψ

(L)

n�k
(�r) modes

do not satisfy Maxwell’s divergence equation, i.e. ∇ ·{√
ε(�r)�Ψ (L)

n�k
(�r)

}
�= 0, and, consequently, they are not ex-

istent. However, these modes are essential mathematically,
since without them eigenfunctions system �Ψn�k(�r) is not
complete.

Transversal eigenfunctions �Ψ (T )

n�k
(�r) satisfy

Ĥ �Ψ
(T )

n�k
(�r) =


ω

(T )

n�k

c




2

�Ψ
(T )

n�k
(�r) (13)

with eigen-angular frequencies ω
(T )

n�k
that are generally

non-zero. These modes satisfy Maxwell’s divergence equa-
tion and do really exist.

Eigenfunctions �Ψn�k(�r) form a complete set in the
Hilbert space. They are not orthogonal to each other but
can be orthogonalized by e.g. Schmidt’s method.

3.2 Symmetry of eigenfunctions

In this paper we restrict our analysis to the consideration
of highly symmetrical points in the first Brillouin zone
(points Γ , X, et al., see Fig. 2) in which properties of
light propagation differ substantially from those for uni-
form media.

Two dimensional PhC apart from the translational
symmetry can posses several other spatial symmetries
such as rotational symmetries 2, 3, 4, 6, mirror reflection
invariance, inversion symmetry.

Together with the identity operation 1 that keeps the
structure as it is, these symmetry operations constitute
the G point group of the PhC. It means that for any oper-
ation R from the G point group (∀R ∈ G) Rε(�r) = ε(�r),
that is, PhC is invariant with respect to the operations of
group G.

The symmetry of the eigenfunctions of the PhC’s is
very important for understanding their optical and mag-
netooptical properties (for details see [30]).

Point group for 2D PhC with square lattice represents

4mm = {1,2,4, 4̄,mx,my,md,m
′
d}, (14)

where 2, 4, 4̄ are rotations by π, π
2 , −π

2 about Z-axis,
respectively; mx, my, md, m′

d are mirror reflections in the
planes that contain Z-axis and Y -axis, X-axis, quadrant
diagonals y = x, y = −x, respectively.

Operators of the G point group also transform vec-
tors �k from the first Brillouin zone. Any vector �k is char-
acterized by its own G�k group which is the subgroup of the
G group. Groups of the some highly symmetrical points in
the first Brillouin zone are more substantial. For 2D PhC’s
with the 4mm point group there are several subgroups:

GΓ = GM = 4mm,
GX = {1, 2,mx,my} = 2mm,
G∆ = {1,my} = 1m,
GΣ = {1,md} = 1m,
GZ = {1,mx} = 1m. (15)

It is known from the crystals band theory that clas-
sification of eigenfunctions of operator Ĥ can be rep-
resented on the basis of irreducible representations G�k
groups. Tables 1a and b are character tables for 4mm
and 2mm points groups. In these tables A1, A2, B1, B2

are one-dimensional irreducible representations and E is
two-dimensional irreducible representation. Here, “one-
dimensional” means that the eigenmode is not degenerate
and “two-dimensional” means that the eigenmode is dou-
bly degenerate. The existence of two dimensional modes
is possible only at Γ and M points of the first Brillouin
zone.

Mirror reflection operations are particularly of great
importance. Their presence in some G�k groups permits
the division of the eigenmodes into two types that differ in
the parity with respect to the reflection in the given plane:
even (A) and odd (B) modes. This fact is significant for
the establishment of the selection rules for transmittance
and reflection from PhC’s, for some nonlinear processes,
for the elimination of the unphysical solutions et al. It
is used below for the calculation of matrix elements of
operator V̂ .

For 2D PhC symmetry z → −z enables to classify all
eigenmodes into two kinds: TE modes (Ez, Hx, Hy) and
TM modes (Ex, Ey, Hz). Each of them, as was mentioned
above, is characterized by additional parity with respect
to the reflection in the corresponding vertical planes.



482 The European Physical Journal B

Table 1. Character table for the 4 mm (a) and 2 mm (b) point groups.

4 mm 1 4 2 mx md

A1 1 1 1 1 1
A2 1 1 1 −1 −1
B1 1 −1 1 1 −1
B2 1 −1 1 −1 1
E 2 0 −2 0 0

(a)

2 mm 1 2 mx my

A1 1 1 1 1
A2 1 1 −1 −1
B1 1 −1 −1 1
B2 1 −1 1 −1

(b)

Fig. 3. Photonic band structure of TE and TM-modes in 2D PhC made of air rods in Si-material (ε1 = 1, ε2 = 11.7). Filling
factor of the rods is 0.785. The second bandgap occurs for normalized angular frequencies from 0.492 to 0.537. It corresponds
to the range of wavelengths in vacuum from 745 nm to 813 nm for PhC lattice constant a = 0.4 mkm.

4 Perturbation theory approach

To remove an ambiguity, in this paper we restrict our con-
sideration to Γ and X extremum points in the first Bril-
louin zone and assume that wave packet in PhC is con-
stituted by Bloch functions �Ψn�k(�r) from one or two PB’s
(depending on the concrete situation) with �k lying in the
vicinity of the critical point. This assumption is similar to
the adiabatic approximation in the solid state physics and
is applicable to the sufficiently small value of perturbation
V̂ . Thus, quasi-momentum �k = (k0+κ, 0, 0), where k0 = 0
for Γ point and k0 = π

a for τ point, κ� k0.
Operator Ĥ in (8) can be presented as the sum of Ĥ0

and Ĥ1 operators:

Ĥ = Ĥ0 + Ĥ1, (16)

where

Ĥ0�un�k =
1√
ε
∇×∇× �un�k√

ε
+ k0∂̂1

�un�k√
ε

+
k2
0

ε
�un�k, (17)

H1�un�k = κ∂̂2

�un�k√
ε

+
2k0κ

ε
�un�k +

κ2

ε
�un�k, (18)

∂̂1, ∂̂2-operators that consist of the first spatial partial
derivatives.

For k close to k0 (i.e. κ � k0) operator Ĥ1, along
with V̂ , are perturbations. In the zeroth order on κ and
Q the solutions of (8) are Bloch functions for different
wave zones. Eigenfunctions of Ĥ0 − �unk0(�r||) form com-
plete basis for the expansion of any function that possesses
translational symmetry. Hence, we can refer to them as

a basis for the expansion of any eigenfunction �un0k(�r||)
of operator Ĥ into series in perturbation theory. Eigen-
angular frequencies of Ĥ0–ωn0 is to be found by means of
solving eigenvalues problem for the set of linear equations
obtained from Maxwell’s equations. There are several al-
gorithms for it. In our calculations we used a procedure
that was proposed in [31]. Examples of PB’s structures
are presented in Figure 3.

Dispersion function ω = ω(k) has extremums at the
critical points of the Brillouin zone and, consequently, does
not contain terms proportional to the first power of κ.
Therefore, in operator Ĥ1, defined by (18), one can omit
terms with κ and operator Ĥ1 is given by H1�un�k = κ2

ε �un�k.

5 Magnetooptics of photonic crystals

5.1 Faraday geometry

There are two main geometries in magnetooptics: (i) longi-
tudinal, or Faraday, geometry when electromagnetic wave
propagates along magnetic field, i.e. �k||�m, (ii) transversal,
or Voigt, geometry when �k⊥�m.

Let us first consider longitudinal geometry for which
�k||�m||�ex and investigate how the presence of magnetic field
affects PB of arbitrary number n0. Here several cases are
possible: (i) n0th PB is not degenerate and single, (ii) n0th
PB is not degenerate, but has close neighbor PB, (iii) n0-
th PB is doubly degenerate (possible only at Γ and M
points). The meaning of the word “close” in (ii) will be
discussed further (see Sect. 5.1.2). We examine two first
possibilities in turn.
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5.1.1 The case of single wave zone

Function �un0k(�r||), that represents the eigenfunction of (8)
for n0th PB, can be written in the first order of perturba-
tion theory as

�un0k(�r||) = c1u
TE
n0k0

(�r||)�ez +c2uTM
n0k0

(�r||)�ey +c3uL
n0k0

(�r||)�ex,
(19)

where uTE
n0k0

, �uTM
n0k0

, and �uL
n0k0

are eigenfunctions of oper-
ator Ĥ0:

Ĥ0�u
TE(TM)
n0k0

=

(
ω

TE(TM)
n0

)2

c2
�u

TE(TM)
n0k0

; Ĥ0�u
L
n0k0

= 0.

(20)
In Faraday geometry c3 = 0 because V̂ �uL

n0k0
= 0. Eigen-

functions �uTE
n0k0

and �uTM
n0k0

usually have different parity.
Substitution of (19) in (8) leads to the following equa-

tions set:{
c1

{
(ωTE

n0k)2 − ω2
}− c2iω

2 〈Q〉 = 0

c2
{
(ωTM

n0k )2 − ω2
}

+ c1iω
2 〈Q〉∗ = 0

, (21)

where(
ω

TE(TM)
n0k

)2

=
(
ωTE(TM)

n0

)2

+ c2κ2βTE(TM), (22)

βTE(TM) =
〈
u

TE(TM)
n0k0

∣∣∣ 1
ε(�r||)

∣∣∣uTE(TM)
n0k0

〉
(23)

〈Q〉 =
〈
uTE

n0k0

∣∣Q(�r||)
∣∣uTM

n0k0

〉
. (24)

In the next order of perturbation theory general structure
of (21) is preserved but coefficients βTE(TM) and 〈Q〉 are
renormalized. Thus, for βTE(TM) we have:

βTE(TM) =
〈
u

TE(TM)
n0k0

∣∣∣ 1
ε(�r||)

∣∣∣uTE(TM)
n0k0

〉

+ κ2c2
∑

n�=n0

∣∣∣〈uTE(TM)
nk0

∣∣∣ 1
ε(�r||)

∣∣∣uTE(TM)
n0k0

〉∣∣∣2(
ω

TE(TM)
n0

)2

−
(
ω

TE(TM)
n

)2 . (25)

Parameter 〈Q〉 is renormalized in the same manner. We
should notice here that in (25) the summation is to be
taken on PB’s with the same parity as n0th PB. On
the contrary, in the corresponding expression for 〈Q〉 one
should summate only PB’s with opposite parities (see
Sect. 3).

It follows from (21) that{
(ωTE

n0k)2 − ω2
}{

(ωTM
n0k )2 − ω2

}− ω4 |〈Q〉|2 = 0. (26)

For revelation of the general features of the magnetoopti-
cal effects in the given geometry we assume that

ωTE
n0

= ωTM
n0

≡ ωn0 and βTE = βTM ≡ β. (27)

This supposition is adequate for 3D PhC for singlet PB
near Γ point.

On these assumptions equation (26) leads to the fol-
lowing solutions for κ:

κ± =
ω

c
√|β|

(∣∣∣∣∣1 − (ωn0)
2

(ω)2
± |〈Q〉|

∣∣∣∣∣
)1/2

, (28)

and corresponding eigenfunctions:

�ψ±(�r||) =

(
uTE

n0k0
(�r||)

∓iuTM
n0k0

(�r||)

)
ei(k0+κ±)x. (29)

These eigenmodes can be called “quasi-circularly po-
larized” modes. Prefix “quasi” here means that waves
�ψ±(�r||) in (29) are the product of fast oscillating func-
tions uTE(TM)

n0k0
(�r||) and comparatively slow changing enve-

lope functions ei(k0+κ±)x. If at x = 0 �ψ(�r||) =
(
uTE

n0k0

0

)
,

then

�Ψ(�r||) = eik0xei
κ++κ−

2 x

(
uTE

n0k0
(x) cos ∆κ

2 x

uTM
n0k0

(x) sin ∆κ
2 x

)
, (30)

where∆κ = κ+−κ−. Equation (30) shows that while light
propagates along OX-axis mode conversion takes place. If
at the PhC’s entry electromagnetic radiation is TE-wave
then while spreading it transforms into TM-wave because
of the medium gyrotropy and so on. Usually, condition

|〈Q〉| �
∣∣∣∣∣1 − (ωn0)

2

(ω)2

∣∣∣∣∣ (31)

is satisfied and specific Faraday angle or rotation angle of
envelope wave’s polarization plane per unit length is

Φ =
∆k

2
=
κ+ − κ−

2
=

ω

2c
√|β| |〈Q〉|

∣∣∣∣∣1 − (ωn0)
2

(ω)2

∣∣∣∣∣
−1/2

.

(32)
From (32) one can infer that specific Faraday angle grows
sharply when ω → ωn0 . It happens in compliance with
fundamental property of PhC’s: near extremum points of
Brillouin zone critical deceleration of radiation takes place
that leads to the increase in the interaction time between
radiational mode and the matter system and, thus, mag-
netooptical effect is enhanced.

It is interesting to compare obtained result with the ex-
perimental measure of Faraday rotation angle for 3D mag-
netic colloidal crystal consisting of a fcc packing of silica
spheres with voids that are filled with a saturated glycerol
solution of dysprosium nitrate [32]. Though formula (32)
was obtained for the 2D-PhC one can expect that it is
valid for some cases in 3D. For example, the propriety of
its application at Γ point for cubic 3D PhC becomes intu-
itively clear when we conduct the analogue with the elec-
tron zones of some semiconductors (e.g. GaAs). Continu-
ing this analogue one can conclude that conditions (27) are
met there and (32) remains valid. Approximation of ex-
perimental curves with the theoretical dependence is quite
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Fig. 4. Faraday rotation angle versus λ
λ n0

. Points-experiment

data for 3D magnetic colloidal crystal consisting of a fcc pack-
ing of silica spheres with voids that are filled with a saturated
glycerol solution of dysprosium nitrate (dspheres = 260 nm,
εsilica = 2.0, εliquid = 2.2, Bext = 33.5 mT, Q = 1 × 107) [32].
Solid curve – theory (in accordance to (32)), λn0 = 566.5 nm.

good that confirms our assumption (Fig. 4). At this ap-
proximation the ratio |〈Q〉|√

|β| plays role of the fitting param-

eter. For the curve in Figure 4 |〈Q〉|√
|β| = 6.55 × 10−9.

When ω becomes very close to ωn0 then (31) is no
longer satisfied and for determination of the specific Fara-
day rotation one should use (28) directly without any ap-
proximations. More careful analysis of Φ(ω) dependence
reveals that it has extremum for ω = ωn0(1±1/2Q) (choice
between “+” and “-” here depends on the sign of β, i.e.
on the sign of the second derivative of PB’s dispersion
curve). This formula is very important because it shows
that Faraday effect takes maximum value not exactly at
the extremum angular frequency ωn0 , for which transmis-
sion is negligibly small, but at its close proximity where
transmission is higher. Maximum value of specific Faraday
rotation is given by

Φ =
ωn0

c
√|β|

√
〈Q〉
2
. (33)

At the same time Faraday rotation for the uniform me-
dia is

Φuniform =
ω

2c
√
εQ. (34)

From (33) and (34) taking into account (23) and (24) one
can estimate relative gain of Faraday effect in PhC in com-
parison to the same uniform medium under the same con-
ditions:

ΦPhC

Φuniform
∼

√
1
Q
. (35)

Thus for Q = 10−6 Faraday effect in PhC can be enhanced
by three orders.

We define conversion coefficient R as the ratio of the
maximum squared amplitudes of the TE- and TM-modes

if at x = 0 TM-wave is supposed to exist. For the condi-
tions (27) R ∼ 1.

For different and not very close(
|〈Q〉| �

∣∣∣∣ (ωT E
n0 )2−(ωTM

n0 )2

(ω)2

∣∣∣∣
)
ωTE

n0
and ωTM

n0
, but with

condition βTE = βTM ≡ β, eigenfunctions equal

�ψ±(�r||) = c1

(
iξuTE

n0k0
(�r||)

uTM
n0k0

(�r||)

)
ei(k0+κ+)x

+ c2

(− i
ξu

TE
n0k0

(�r||)

uTM
n0k0

(�r||)

)
ei(k0+κ−)x, (36)

where ξ = ω2|〈Q〉|
(ωT E

n0 )2−(ωTM
n0 )2 . For this case effect of birefrin-

gence appears, conversion coefficient R decreases and is of
the order of ξ2 as in birefringent crystals (see for exam-
ple [27]). If electromagnetic radiation is linear polarized at
the entrance of PhC then while spreading in PhC polar-
ization mainly preserves with very little ellipticity. At the
same time, TE-TM modes partial conversion takes place
at much smaller distances.

Distinction between values of βTE and βTM compli-

cates analysis. For some values of
ωT E

n0
ωT M

n0
TE - mode prevails

and for other values – TM-mode prevails for arbitrary en-
try polarization.

General impact of magnetic field on PB structure is
expressed in the contraction of PBG’s: PB’s in magnetic
field shift at Qωn0 .

For magnetooptical parameter Q = 5 × 10−3 the shift
is about several tenths of percent. The value of the shift
depends on the difference ωTE

n0
− ωTM

n0
and gets smaller

when the difference increases.

5.2 The case of two close wave zones

The situation when two PB’s are close exists quite often
and undoubtedly deserves special examination. We con-
sider two consecutive zones of numbers n0 and n0 + 1
with corresponding frequencies ωTE(TM)

0 −∆TE(TM) and
ω

TE(TM)
0 + ∆TE(TM) for TE- and TM-modes, where
ω

TE(TM)
0 is the middle frequency and∆TE(TM) is the half-

width of the PBG between given zones (Fig. 5). To begin,
let us define what “close” means at this point. The singlet
PB’s splitting that arises in magnetic field is of the order
of ωn0Q (it follows from (28)). That is why we call two
wave zones “close” if the distance between them smaller
then this magnetic caused splitting, i.e. 2∆ < ωn0Q.

At Γ and X points parities of two consecutive bands
are usually opposite, so for the sake of distinctness we
assume that TE-eigenfunction for n0th band has parity of
B1 and for (n0 + 1)th band – parity of A1 (see Tabs. 1 a
and b) and vice versa for TM-eigenfunctions.

Function �un0k(�r||), that represents the eigenfunction
of (8) for two close PB’s for magnetic case, can be written
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Fig. 5. Two close photonic bands of numbers n and n + 1 at
the vicinity of X point in the Brillouin zone. Distance between
bands at X point is ∆. (it is assumed that for TE- and TM-
modes interband distances and extremum angular frequencies
are the same: ωTE

0 = ωTM
0 ≡ ω0, ∆TE = ∆TM = ∆).

in the first order of perturbation theory as

�un0k(�r||) =
(
c1u

TE
n0k0

(�r||) + c2u
TE
(n0+1),k0

(�r||)
)
�ez

+
(
c3u

TM
n0k0

(�r||) + c4u
TM
(n0+1),k0

(�r||)
)
�ey. (37)

Procedure similar to the one in 5.1.1 gives the following
equations set for coefficients ci:



c1
(
(ωTE

1 )2 − ω2
)− c4iω

2 〈QB〉 = 0

c4
(
(ωTM

2 )2 − ω2
)

+ c1iω
2 〈QB〉∗ = 0

c2
(
(ωTE

2 )2 − ω2
)− c3iω

2 〈QA〉 = 0

c3
(
(ωTM

1 )2 − ω2
)

+ c2iω
2 〈QA〉∗ = 0

, (38)

where

(
ω

TE(TM)
i

)2

=

{(
ω

TE(TM)
0 −∆TE(TM)

)2

+ κ2c2β
TE(TM)
1 , i = 1(

ω
TE(TM)
0 +∆TE(TM)

)2

+ κ2c2β
TE(TM)
2 , i = 2

,

β
TE(TM)
i =

〈
u

TE(TM)
(n0−1+i),k0

∣∣∣ 1
ε

∣∣∣uTE(TM)
(n0−1+i),k0

〉
,

i = 1, 2, 〈QA〉 =
〈
uTE

(n0+1),k0

∣∣∣Q(�r||)
∣∣uTM

n0,k0

〉
,

〈QB〉 =
〈
uTE

n0,k0

∣∣Q(�r||)
∣∣∣uTM

(n0+1),k0

〉
.

While derivation of (38) eigenfunctions symmetry prop-
erties were taken into consideration (see Sect. 3). Thus,
it is evident from symmetry considerations that some
matrix elements such as

〈
uTE

(n0+1),k0

∣∣∣Q(�r||)
∣∣∣uTM

(n0+1),k0

〉
,〈

uTE
n0,k0

∣∣∣ 1
ε(�r||)

∣∣∣uTE
(n0+1),k0

〉
et al. vanish. From (38) a dis-

persion relation can be obtained. For the case when ωTE
0 =

Fig. 6. Band gap width ∆ωg versus magnetooptical parameter
Q; ωTE

0 = ωTM
0 ≡ ω0 = 0.32 2πc

a
, ∆TE = ∆TM = 5 × 10−4 2πc

a
.

ωTM
0 ≡ ω0, ∆TE = ∆TM = ∆ and βTE

i = βTM
i ≡ β this

dispersion relation takes simple form:

κ =
ω

c
√|β|



√(

1 − ω2
0 +∆2

ω2

)2

−Q2 − 2
ω0∆

ω2




1/2

,

(39)
which implies that for any fixed frequency ω from n0th or
(n0+1)th close PB’s only one electromagnetic mode prop-
agates and nor transformation exists. However, the pres-
ence of magnetic field influences on the PBG’s width ∆ωg:

∆ωg = ω0

√(
2∆
ω0

)2

+Q2, (40)

making it larger (Fig. 6).

5.3 Voigt geometry. Magnetic birefringence

The other important configuration is the Voigt geometry
when �Bext||�ez and �k||�ex. The analysis of this case can be
done in the same manner as for Faraday geometry in Sec-
tion 5.1.

5.3.1 The case of single wave zone

Eigenfunction �un0k(�r||) of (8) for n0th PB, is again given
by (19), but for the Voigt geometry coefficient c3 in (19)
no longer vanishes. Substitution of (19) in (8) leads to the
two independent subsets: one for uTE

n0k0
, and the other for

uTM
n0k0

and uL
n0k0

. The former subset gives wave vector for
TE – mode:

κ|| =
ω

c
√|βTE |

∣∣∣∣∣1 −
(
ωTE

n0

ω

)2
∣∣∣∣∣
1/2

. (41)

The second subset leads to the following simultaneous
equations:{

c2
{
(ωTM

n0k )2 − ω2
}− c3iω

2 〈QL〉∗ = 0

c2i 〈QL〉 − c3 = 0
, (42)
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where 〈QL〉 =
〈
uL

n0k0

∣∣Q(�r||)
∣∣uTM

n0k0

〉
. This equations set

has nontrivial solution when

κ⊥ =
ω

c
√|βTM |

∣∣∣∣∣1 −
(
ωTM

n0

ω

)2

− |〈QL〉|2
∣∣∣∣∣
1/2

. (43)

Comparing (41) and (43) one can determine relative phase
shift between TE- and TM-modes at the unit length:

Bmb = Re
(
κ|| − κ⊥

)
=

ω

2c
√|β| |〈QL〉|2

∣∣∣∣1 − ω2
n0

ω2

∣∣∣∣
−1/2

,

(44)
we have assumed here that conditions (27) are satisfied

and |〈QL〉| �
∣∣∣∣1 − (ωn0)

2

(ω)2

∣∣∣∣.
This effect of magnetic birefringence is analogous to

the magnetooptical Voigt effect (see e.g. [27]). In compari-
son to the letter, formula (44) demonstrates sharp increase
of the phase shift Bmb near the extremum points of Bril-
louin zone. It is largely due to the same reasons as the
increase of Faraday rotation (see Sect. 5.1.1).

It is evident from (41) and (43) that presence of mag-
netic field affects only on TM-mode shifting its corre-
sponding PB. The value of this shift is of the order of
ωn0Q

2 and, consequently, much smaller then in Faraday
geometry.

5.3.2 The case of two close wave zones

Consideration of the case when the distance between two
PB’s is 2∆TE(TM) and ∆TE(TM) ≤ ω0Q

2 (see Sect. 5.2.1)
can be done in the similar manner as for the Faraday
geometry (see Sect. 5.1.2).

Magnetic field influences only on TM – mode and,
thus, only κ⊥ depends on QL:

κ±⊥=
ω

c
√|β|


1 − ω2

0 +∆2

ω2
−Q2

L ±
√

4
(ω0∆)2

ω4
+Q4

L




1/2

.

(45)

6 Conclusion

We have studied magnetooptical properties of two dimen-
sional PhC’s composed either of dielectric or magnetic
materials that implies an investigation of the magnetic
field influence on the electromagnetic waves propagation
in PhC’s. Theoretical investigation has been performed
on the basis of solving eigenvalues problem obtained from
Maxwell’s equations. Magnetic part of the medium’s po-
larization has been considered as a perturbation and cor-
responding magnetooptical effects were calculated in the
first order of perturbation theory. Two main geometries
have been examined: the Faraday and Voigt configura-
tions.

In the Faraday geometry in which �k||�m||�ex the TE-
TM mode conversion takes place – the effect similar to
the magnetooptical Faraday effect. The Faraday angle de-
pends on the wave frequency ω and increases sharply when
ω approaches extremum frequencies ωn0 of wave bands.
However, Faraday effect takes its maximum value not ex-
actly at ωn0 , but at its close proximity (see Sect. 5.1.1)
where transmission coefficient is not too small. Substan-
tial increase in the Faraday effect happens for ferromag-
netic constituents. Thus for the magnetic material with
magnetooptical parameterQ ∼ 10−3 the Faraday rotation
angle can be as large as 20◦/mkm for near infrared radia-
tion. This phenomenon is very promising for construction
of the miniature optical isolators in the integrated optics.
Relative enhancement of the Faraday rotation in PhC with
respect to the uniform medium is larger for smaller values
of Q (see Sect. (35)). That makes applications of nonmag-
netic substances with magnetic field induced gyrotropy
(for which Q ∼ 10−5 − 10−7) for the fabrication of PhC’s
the most valuable.

Comparison of the theoretical formula for Faraday ro-
tation with experimental data for 3D opal-like magnetic
PhC gives good results approving validity of the elabo-
rated theory not only for two but also for three dimen-
sions.

Relative phase shift between TE- and TM-modes that
originates in the Voigt configuration shows similar sharp
frequency dependence. This effect is analogous to the lin-
ear magnetic birefringence effect.

To conclude, magnetic PhC’s evince giant magnetoop-
tical effects (circular and linear birefringence) for radiation
frequencies close to the extremum PB frequencies at the
vicinity of high-symmetry points in the Brillouin zone.
Besides, magnetic field can influence on PBG structure
changing their width. All this proves that magnetic PhC’s
are of importance for light managing in modern devices of
integrated optics.

This work is supported by RFBR (N◦ 01-02-16595, 02-02-
17389, 03-02-16980).

References

1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987)
2. E. Yablonovitch et al., Phys. Rev. Lett. 61, 2546 (1988)
3. S. John, Phys. Rev. Lett. 58, 2486 (1987)
4. J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic

Crystals: Molding the Flow of Light (Princeton University
Press, 1995)

5. V. Kuzmiak, A.A. Maradudin, Phys. Rev. B 57, 15242
(1987)

6. E. Centeno, D. Felbacq, Phys. Lett. A 269, 165 (2000)
7. C. Monat, C. Seassal, X. Letartre et al., Physica E 17, 475

(2003)
8. M.D.B. Charlton, M.E. Zoorob, G.J. Parker et al., Mater.

Sci. Engin. B 74, 17 (2000)
9. T.A. Birks, D. Mogilevtsev, J. C. Knight et al., IEEE

Photonics Technol. Lett. 11, 674 (1999)
10. V. Berger, Phys. Rev. Lett. 81, 4136 (1998)



A.K. Zvezdin and V.I. Belotelov: Magnetooptical properties of two dimensional photonic crystals 487

11. K. Sakoda, K. Ontaka, Phys. Rev. B 54, 5742 (1996)
12. T. Baba, M. Nakamura, IEEE J. Quantum Electr. 38, 909

(2002)
13. P. Halevi, F. Ramos-Mendieta, Phys. Rev. Lett. 85, 1875

(2000)
14. A. de Lustrac, F. Gadot, S. Cabaret et al., Appl. Phys.

Lett. 75, 1625 (1999)
15. S. Kim, V. Gopalan, Appl. Phys. Lett. 78, 3015 (2001)
16. C.S. Kee, H. Lim, Y.K. Ha et al., Phys. Rev. B 64, 085114

(2001)
17. D. Lacoste, F. Donatini, S. Neveu et al., Phys. Rev. E 62,

3934 (2000)
18. B. Gates, Y.N. Xia, Adv. Mater. 13, 1605 (2001)
19. X.L. Xu, G. Friedman, K.D. Humfeld et al., Adv. Mater.

13, 1681 (2001)
20. E.L. Bizdoaca, M. Spasova, M. Farle et al., J. Magn. Magn.

Mater. 240, 44 (2002)
21. A. Figotin, I. Vitebsky, Phys. Rev. E 63, 066609 (2001)
22. Y. Saado, M. Golosovsky, D. Davidov et al., Phys. Rev. B

66, 195108 (2002)

23. M. Inoue, K. Arai, T. Fujii et al., J. Appl. Phys. 85, 5768
(1999)

24. A.K. Zvezdin, Bulletin of the Lebedev Physics Institute
(RAS) 37 (2002)

25. M. Levy, H. C. Yang, M.J. Steel et al., J. Lightwave
Technol. 19, 1964 (2001)

26. M.J. Steel, M. Levy, R.M. Osgood Jr., J. Lightwave
Technol. 18, 1297 (2000)

27. A.K. Zvezdin, V.A. Kotov, Modern Magnetooptics and
magnetooptical materials (IOP Publishing, Bristol and
Philadelphia, 1997)

28. J. Metzdorf, F.R. Kessler, Phys. Status Solidi (b) 71, 237
(1975)

29. I.S. Grigoriev, Hand-book Physical values (Moscow, 1991)
30. K. Sakoda, Optical properties of Photonic Crystals

(Springer, 2001)
31. M. Plihal, A. Shambrook, A.A. Maradudin, Opt.

Commun. 80, 199 (1991)
32. C. Koerdt, G.L.J.A. Rikken, E.P. Petrov, Appl. Phys. Lett.

82, 1538 (2003)


